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ABSTRACT
Recent research on Internet traffic classification algorithms
has yield a flurry of proposed approaches for distinguishing
types of traffic, but no systematic comparison of the various
algorithms. This fragmented approach to traffic classifica-
tion research leaves the operational community with no ba-
sis for consensus on what approach to use when, and how to
interpret results. In this work we critically revisit traffic clas-
sification by conducting a thorough evaluation of three clas-
sification approaches, based on transport layer ports, host
behavior, and flow features. A strength of our work is the
broad range of data against which we test the three classi-
fication approaches: seven traces with payload collected in
Japan, Korea, and the US. The diverse geographic locations,
link characteristics and application traffic mix in these data
allowed us to evaluate the approaches under a wide variety
of conditions. We analyze the advantages and limitations
of each approach, evaluate methods to overcome the limi-
tations, and extract insights and recommendations for both
the study and practical application of traffic classification.
We make our software, classifiers, and data available for re-
searchers interested in validating or extending this work.

1. INTRODUCTION
Political, economic, and legal struggles over appropriate

use and pricing of the Internet have brought the issue of traf-
fic classification to mainstream media. Three of the most
important and acrimonious tussles are: (a) the file sharing
tussle, between the file sharing community and intellectual
property representatives RIAA (Recording Industry Associ-
ation of America) and MPAA (Motion Picture Association
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of America); (b) the battle between malicious hackers, e.g.
worm creators, and security management companies; and
(c) the network neutrality debate, between ISPs and con-
tent/service providers. In all cases the algorithmic playing
field is traffic classification: stopping or deprioritizing traffic
of a certain type, versus obfuscating a traffic profile to avoid
being thus classified. Traffic classification is also relevant
to the more mundane but no less important task of optimiz-
ing current network operations and planning improvements
in future network architectures, which means the increas-
ing incentives to prevent accurate classification of one’s own
traffic presents an obstacle to understanding, designing, op-
erating, financing, and regulating the Internet.

In the early Internet, traffic classification relied on the
use of transport layer port numbers, typically registered with
IANA to represent a well-known application. More recently,
increasingly popular applications such as those that support
peer-to-peer (P2P) file sharing, hide their identity by assign-
ing ports dynamically and/or using well-known ports of other
applications, rendering port-based classification less reliable
[24, 30, 37]. A more reliable approach adopted by commer-
cial tools [2, 3] inspects packet payloads for specific string
patterns of known applications [12, 22, 25, 30, 37]. While
this approach is more accurate, it is resource-intensive, ex-
pensive, scales poorly to high bandwidths, does not work
on encrypted traffic, and causes tremendous privacy and le-
gal concerns. Two proposed traffic classification approaches
that avoid payload inspection are: (1) host-behavior-based,
which takes advantage of information regarding “social in-
teraction” of hosts [23, 24, 25], and (2) flow features-based,
which classifies based on flow duration, number and size of
packets per flow, and inter-packet arrival time [29, 31, 36, 9,
16, 17, 7, 14, 42, 20, 39, 27].

Despite many proposed algorithms for traffic classifica-
tion, there are still no definitive answers to pragmatic ques-
tions: What is the best available traffic classification ap-
proach? Under what link characteristics and traffic condi-
tions does it perform well, and why? What are the funda-
mental contributions and limitations of each approach?

Rigorous comparison of algorithms remains a challenge



for three reasons [19]. First, there is few publicly avail-
able trace data to use as a benchmark, so every approach is
evaluated using different traces, typically locally collected,
often without payload (ground truth). Second, different tech-
niques track different features, tune different parameters and
even define flows and applications differently. Third, authors
usually do not make their tools or data available with their
results, so reproducing results is essentially impossible.

To begin to calibrate the research community’s efforts, we
conducted a comprehensive evaluation of three traffic clas-
sification approaches: port-based, host-behavior-based, and
flow-features-based. We tested each technique on a broad
range of data sets: seven payload traces collected at two
backbone and two edge links located in Japan, Korea, and
the US. Diverse geographic locations, link characteristics,
and application traffic mix in these data allowed us to test
the approaches under a wide variety of conditions.

We highlight the main contributions from our study:
a. We evaluate the performance of CoralReef (ports-based),

BLINC (host-behavior-based), and seven commonly used
machine learning algorithms (flow-features-based). We ana-
lyze the advantages and limitations of each approach, evalu-
ate methods to overcome the limitations, and extract insights
and recommendations for both the study and practical appli-
cation of traffic classification.

b. We found the Support Vector Machine (SVM) algo-
rithm, which we explain in section 3.3.3, achieved the high-
est accuracy on every trace and application, with >98.0%
accuracy on average when trained with more than only 5,000
flows (2.5% of the size of the testing sets).

c. We found a set of single-directional key flow features
that were consistent within an application across our traces;
ports, protocol, TCP header flags, and packet size. A limi-
tation of previous attempts based on flow features [29, 31,
36, 9, 16, 7, 14, 42, 20, 39, 27] is that they used bidi-
rectional TCP connection statistics, which do not work for
UDP traffic, or for backbone links, which only see both di-
rections of traffic under (atypical) symmetric routing con-
ditions. We also found that ports remain one of the most
important discriminators, particularly when used in combi-
nation with other flow features such as packet size informa-
tion, TCP header flags and protocol.

d. We empirically found that the accuracy of host-behavior-
based methods such as BLINC strongly depends on topolog-
ical location. The best place to use BLINC is the border link
of a single-homed edge network, so BLINC can capture full
(bidirectional) behavioral information of the internal hosts.
BLINC is not recommended for backbone links, where (i)
only a small portion of behavioral information is collected
for each host and (ii) we often miss one direction of traffic
due to asymmetric routing.

e. To mitigate the limitation of BLINC on backbone traf-
fic classification, we extended BLINC to identify some ap-
plication traffic (Web, P2P, ...) even when both directions of
flows are not observed. This process significantly improved
the accuracy on backbone traces by as much as 45%.

f. We propose a robust traffic classifier which achieves
>94.2% accuracy on every trace we examined, using the
SVM algorithm, our suggested key flow features, and an un-
biased (or less biased) training set extracted from multiple
traces from Japan, Korea, and the US. This is the first study
to show the feasibility of such a robust traffic classifier.

g. We make our developed code, dataset labeled with
ground truth, and classifiers available for researchers inter-
ested in validating or extending the work.

The remainder of this paper is organized as follows. After
reviewing related work in section 2, we describe our data
and methodology in section 3. Section 4 presents the results
of classification on the data from real networks. We propose
and evaluate a robust classifier which works well on both
available and unseen data in section 5. We discuss lessons
learned in section 6. Section 7 concludes the paper.

2. RELATED WORK
Port-based approach. Although port-based traffic classi-

fication is the fastest and simple method, several studies have
shown that it performs poorly, e.g., less than 70% accuracy
in classifying flows [15, 30]. We acknowledge the coarse-
ness of assessing performance over an entire trace rather
than for the applications actually using well-known ports [19].
This performance metric essentially indicates the amount
of traffic in the trace using well-known ports, which can
vary widely, and does not classify traffic that is mis-using
well-known ports assigned to a different application. We
will evaluate the performance of each algorithm on a per-
application basis [19], and explore why a given algorithm
works well or poorly for certain applications. We used Coral-
Reef [1] for the port-based approach.

Payload-based approach. Payload-based classification
algorithms inspect the packet contents to identify the appli-
cation. Once a set of unique payload signatures is available
for an application, this approach produces extremely accu-
rate classification. After early work showed the value of
payload signatures in traffic classification [12, 30, 37], oth-
ers have proposed automated ways to identify such signa-
tures [22, 28], while they evaluated the automated schemes
only on conventional applications such as FTP, SMTP, HTTP,
HTTPS, SSH, DNS, and NTP, not on newer applications
such as P2P, Games, and Streaming. We use the payload-
based classifier developed in earlier efforts [25, 16, 41] to
establish ground truth for our traces.

Host-behavior-based approach. The host-behavior-based
approach was developed to capture social interaction observ-
able even with encrypted payload [24, 25, 23]. For example,
BLINC [25] captures the profile of a host, in terms of the
destinations and ports it communicates with, identifies ap-
plications the host is engaged in by comparing the captured
profile with (built-in to BLINC) host behavior signatures of
application servers, and then classifies traffic flows. Re-
cently Iliofotou, et al. proposed Traffic Dispersion Graphs
that can potentially be used to classify applications using the
network-wide interactions of hosts [23].



Table 1: Characteristics of analyzed traces
Set Date Day Start Duration Link type Src.IP Dst.IP Packets Bytes Avg. Util Avg. Flows Payload

(/5 min.)
PAIX-I 2004-02-25 Wed 11:00 2h backbone 410 K 7465 K 250 M 91 G 104 Mbps 1055 K 16 Bytes
PAIX-II 2004-04-21 Wed 19:59 2h 2m backbone 2275 K 17748 K 1529 M 891 G 997 Mbps 4651 K 16 Bytes
WIDE 2006-03-03 Fri 22:45 55m backbone 263 K 794 K 32 M 14 G 35 Mbps 312 K 40 Bytes
Keio-I 2006-08-06 Tue 19:43 30m edge 73 K 310 K 27 M 16 G 75 Mbps 158 K 40 Bytes
Keio-II 2006-08-10 Thu 01:18 30m edge 54 K 110 K 25 M 16 G 75 Mbps 92 K 40 Bytes
KAIST-I 2006-09-10 Sun 02:52 48h 12m edge 148 K 227 K 711 M 506 G 24 Mbps 19 K 40 Bytes
KAIST-II 2006-09-14 Thu 16:37 21h 16m edge 86 K 101 K 357 M 259 G 28 Mbps 21 K 40 Bytes

Flow features-based approach. Substantial attention has
been invested in data mining techniques and machine learn-
ing algorithms using flow features for traffic classification [29,
31, 36, 9, 16, 17, 7, 14, 42, 20, 39, 27]. Nguyen et al. sur-
veys, categorizes and qualitatively reviews these studies in
terms of their choice of machine learning strategies and pri-
mary contributions to the traffic classification literature [33].
Their survey is complementary to our work, where we pur-
sue quantitative, measurement-based, performance evalua-
tion of the seven machine learning algorithms using multiple
datsets collected from Japan, Korea, and the US.

Machine learning algorithms are generally categorized into
supervised learning and unsupervised learning or cluster-
ing. Supervised learning requires training data to be labeled
in advance and produces a model that fits the training data.
The advantage of these algorithms is that they can be tuned
to detect subtle differences and they clearly label the flows
upon termination, unlike the unsupervised ones. Unsuper-
vised learning essentially clusters flows with similar charac-
teristics together [16, 26]. The advantage is that it does not
require training, and new applications can be classified by
examining known applications in the same cluster. Erman et
al. [16] compared the performance of unsupervised machine
learning algorithms in traffic classification. Since our main
focus is on evaluating the predictive power of a built/trained
traffic classifier rather than on detecting new applications or
flow clustering, we first focus on supervised machine learn-
ing algorithms in this paper, leaving a performance com-
parison study of both supervised and unsupervised machine
learning algorithms as future work.

3. COMPARISON METHODOLOGY
This section describes our comparison methodology, in-

cluding performance metrics, dataset, comparison benchmark,
and experimental setup for machine learning algorithms. We
use the definition of a flow based on its 5-tuple (source IP
address, destination IP address, protocol, source port, desti-
nation port) with a timeout of 64 seconds [13].

3.1 Performance metrics
To measure the performance of CoralReef, BLINC, and

machine learning algorithms, we use four metrics: overall
accuracy, precision, recall, and F-Measure. 1

1Given space limitations, we do not study computational time in
depth, which we leave for future work, but discuss it briefly wher-
ever possible. Computational complexity and its trade-off with re-
sources (e.g., memory) is important in real-time deployments and
hardware implementations.

• Overall accuracy is the ratio of the sum of all True Pos-
itives to the sum of all the True Positives and False Positives
for all classes.2 We apply this metric to measure the accu-
racy of a classifier on the whole trace set. The latter three
metrics are to evaluate the quality of classification results
for each application class.
• Precision of an algorithm is the ratio of True Positives

over the sum of True Positives and False Positives or the
percentage of flows that are properly attributed to a given
application by this algorithm.

• Recall is the ratio of True Positives over the sum of True
Positives and False Negatives or the percentage of flows in
an application class that are correctly identified.

• Finally, F-Measure, a widely-used metric in informa-
tion retrieval and classification [40], considers both precision
and recall in a single metric by taking their harmonic mean:
2 × precision × recall/(precision + recall). We use this
metric to compare and rank the per-application performance
of machine learning algorithms included in the WEKA.

3.2 Data set and comparison benchmark
Our datasets consisted of seven anonymized payload traces

collected at two backbone and two edge links located in the
U.S., Japan, and Korea (Table 1). The PAIX backbone traces
were taken on a bidirectional OC48 trunk of an US Com-
mercial Tier 1 backbone link connecting San Jose and Seat-
tle. The WIDE trace was captured at a 100 Mbps Ethernet
US-Japan Trans-Pacific backbone link that carries commod-
ity traffic for WIDE member organizations. The Keio traces
were collected on a 1 Gb/s Ethernet link in Keio University
Shonan-Fujisawa campus. The KAIST traces were captured
at one of four external links connecting a 1 Gb/s KAIST
campus network and a national research network in Korea.

To establish a reference point in evaluating the algorithms,
we used the payload-based classifier developed in [25], which
we augmented with more payload signatures from [37, 16,
41] and manual payload inspection. Our resulting classifier
includes payload signatures of various popular applications,
summarized in Table 2. The payload classification proce-
dure examines the payload contents of each packet against
our array of signature strings, and in case of a match, classi-
fies the corresponding flow with an application-specific tag.
Previously classified flows are not re-examined again un-
less they have been classified as HTTP, in which case re-

2True Positives is the number of correctly classified flows, False
Positives is the number of flows falsely ascribed to a given appli-
cation, and False Negatives is the number of flows from a given
application that are falsely labeled as another application.
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Figure 1: Application breakdown. Note that some of the filler-patterns are repeated.

examination may allow identification of non-web traffic re-
layed over HTTP (e.g., Streaming, P2P, etc.) [25].

After the payload-based classification process, we iden-
tify scanning activities using scan detection heuristics in [5].
Flows that could not be classified during the signature match-
ing and scanning detection processes are categorized as un-
known, which represents 4.7%-9.6% of flows in the PAIX
and Keio traces, 28.6% in the WIDE trace, and around 60%
in the two KAIST traces. Approximately 90% of those un-
known flows in the KAIST traces were from/to three Planet-
Lab [21] machines. Our experience and Karagiannis et al.’s
study [24] with payload classification suggest that the first 16
bytes of payload suffice for signature-based classification for
most legacy and P2P applications except Gnutella3 particu-
larly on the PAIX and Keio traces where unknown flows rep-
resent less than 5%-10%. We exclude attack, unknown, and
SSH/SSL encrypted (which represents 1.9%-4.5% of flows
across our traces) flows from our analysis.

Figure 1 shows payload classification results for our traces.
The traces vary widely in application mix, motivating our
per-application analysis. Scanning (Attack) traffic contributes
14%-35% of flows in the WIDE, Keio, and PAIX traces.

Table 2: Application categories.
Category Application/protocol
web http, https
p2p FastTrack, eDonkey, BitTorrent, Ares

Gnutella, WinMX, OpenNap, MP2P
SoulSeek, Direct Connect, GoBoogy
Soribada, PeerEnabler

ftp ftp
dns dns
mail/news smtp, pop, imap, identd, nntp
streaming mms(wmp), real, quicktime, shoutcast

vbrick streaming, logitech Video IM
network operation netbios, smb, snmp, ntp, spamassassin

GoToMyPc
encryption ssh, ssl
games Quake, HalfLife, Age of Empires, Battle field Vietnam
chat AIM, IRC, MSN Messenger, Yahoo messenger
attack address scans, port scans
unknown -

3Gnutella (and its variants) uses variable length padding; Erman et
al.’s measurements indicate that 400 payload bytes of each packet
is required to identify 90% of the Gnutella flows using payload
signatures [20].

3.3 Machine learning experiments
In this paper, we address three main challenges of the flow

features-based traffic classification using supervised machine
learning algorithms: (i) finding a set of key flow features
that capture fundamental characteristics of different types of
applications [31, 7, 39], (ii) finding the most accurate algo-
rithm(s) with acceptable computational cost [39], and (iii)
obtaining representative datasets with ground truth for vari-
ous applications, i.e., datasets that contain correct and com-
plete instances of application flows, in terms of their funda-
mental flow features [20].

3.3.1 Flow features
We use unidirectional flow features of TCP and UDP traf-

fic to build a classifier that handles both TCP and UDP as
well as backbone and edge traffic. We use 37 unidirectional
flow features most of which were inspired from the 248 bidi-
rectional features used in [31, 7] and the 22 bidirectional fea-
tures in [38, 39]. The 37 features are: protocol, source and
destination ports, the number of packets, transferred bytes,
the number of packets without Layer 4 (TCP/UDP) payload,
start time, end time, duration, average packet throughput
and byte throughput, max/min/average/standard deviation of
packet sizes and inter-arrival times, number of TCP packets
with FIN, SYN, RSTS, PUSH, ACK, URG (Urgent), CWE
(Congestion Window Reduced), and ECE (Explicit Conges-
tion Notification Echo) flags set (all zero for UDP packets),
and the size of the first ten packets.

3.3.2 Feature Selection
Feature selection, as a preprocessing step to machine learn-

ing, is the process of choosing a subset of original features
that will optimize for higher learning accuracy with lower
computational complexity. The process removes irrelevant [34]
and redundant [6] features, i.e., those that can be excluded
from the feature set without loss of classification accuracy,
thus improving algorithm performance.

We use the Correlation-based Filter (CFS), which is com-
putationally practical and outperforms the other filter method
(Consistency based Filter) in terms of classification accuracy
and efficiency [38, 39]. The Correlation-based Filter exam-
ines the relevance [10] of each feature, i.e., those highly cor-
related to specific class but with minimal correlation to each



other [39]. We use a Best First search to generate candi-
date sets of features from the feature space, since it provides
higher classification accuracy (percent of correctly classified
instances) than Greedy search [38, 39].

3.3.3 Supervised machine learning algorithms
We use the WEKA machine learning software suite [4],

often used in traffic classification efforts [29, 18, 16, 32,
31, 39], to evaluate the seven most commonly used super-
vised machine learning algorithms. We reveal (i) which al-
gorithm(s) performs best for traffic classification, (ii) the ef-
fects of training set size on the classification performance of
learning algorithms, i.e., how many training instances each
algorithm requires to achieve a certain level of, say, >90% or
95% overall accuracy and per-application performance (F-
Measure), and (iii) whether the results are consistent or not
across different traces. To this end, we conduct seven exper-
iments for the comparison of the algorithms on each trace,
varying the size of the sampled training set while using the
same, fixed size testing set. To separate training and test-
ing sets, 50% of each trace is chosen randomly to form a
pool of training flows, and the remaining 50% is used for a
pool of testing ones. As these sets contain more than mil-
lions or hundreds of thousands of flows, we randomly sam-
ple 100; 500; 1,000; 5,000; 10,000; 50,000; and 100,000
training flows from the former training pool, while we ran-
domly sample 200,000 flows as a testing set from the latter
testing pool.4 We briefly describe algorithms we evaluted:

Naive Bayes [31, 39] is the simplest probabilistic classi-
fier based on Bayes’ theorem, which analyzes the relation-
ship between each feature and the application class for each
instance to derive a conditional probability for the relation-
ships between the feature values and the class.

Naive Bayes Kernel Estimation [31, 39] is a generaliza-
tion of Naive Bayes which models features using multiple
Gaussian distributions, known to be more accurate than a
single Gaussian distibution for traffic classification.

Bayesian Network [39, 38] is a directed acyclic graph
model that represents a set of features (or classes) as its
nodes, and their probabilistic relationship as edges. If the
conditional independence assumption is not valid, Bayesian
Network learning may outperform Naive Bayes.

C4.5 Decision Tree [38] constructs a model based on a
tree structure, in which each internal node represents a test
on features, each branch represents an outcome of the test,
and each leaf node represents a class label. In order to use
a decision tree for classification, a given tuple (whose class
we want to predict) corresponding to flow features, walks
through the decision tree from the root to a leaf. The label
of the leaf node is the classification result.

k-Nearest Neighbors (k-NN) [36] computes Euclidean
distances from each test instance to the k nearest neighbors
in the n-dimensional feature space. The classifier assigns the
majority class label among the k nearest neighbors to the test
tuple. We use k = 1, by which we obtained the highest over-

4The smallest trace of ours contains approximately 420,000 flows
labeled with payload classification results.
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Figure 2: Overall accuracy of CoralReef

all accuracy among the experiments where we tested with k
= 1, 3, 5, 7, 9, 11, 13, 15, 17, and 19.

Neural Networks [7, 38] is a highly interconnected net-
work of units, neurons, whose output is a combination of the
multiple weighted inputs from others neurons. We use the
most common and simple Neural Network classifier called
the Multilayer Perceptron, which consists of a single input
layer of neurons (features), a single output layer of neu-
rons (classes), and one or more hidden layers between them.
Following [38, 4], we set learning rate (weight change ac-
cording to network error) to 0.3, the momentum (proportion
of weight change from the last training step used in the next
step) to 0.2 and we ran the training for 500 epochs (an epoch
is the number of times training data is shown to the network).

Support Vector Machines (SVM) [38, 8, 27] The basic
principle of SVM is to construct the optimal separating hy-
perplane, which maximizes the distance between the closest
sample data points in the (reduced) convex hulls for each
class, in an n-dimensional feature space [8]. Intuitively, we
would expect that this boundary to generalize better than
other possible boundaries between classes. We use the Se-
quential Minimal Optimization (SMO) [35], a faster algo-
rithm for training SVM that uses pairwise classification to
break a multi-class problem into a set of 2-dimensional sub-
problems, eliminating the need for numerical optimization.
The two most important parameters in SVM are the com-
plexity parameter C and the polynomial exponent p [27, 38].
Li et al. [27] showed that varying the complexity parameter
C influenced the overall accuracy of their SVM traffic clas-
sifier by only a little (around 1% at most). We use 1 for both
parameters as in [38, 4].

4. RESULTS
We evaluate the performance of nine algorithms for Inter-

net traffic classification: CoralReef, BLINC, and the seven
machine learning algorithms described.

4.1 CoralReef
To evaluate port-based classification, we compare the per-

formance of CoralReef’s port classification rules [1] with
our payload-based classifier, which we use as ground truth.

4.1.1 Overall accuracy
The overall accuracy of any port-based classification re-

flects how much traffic in the examined traces obeys the



 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KEIO-I

KEIO-II

KAIST-I

KAIST-II

P
er

ce
nt

ag
e 

of
 F

lo
w

s 
(%

)
Precision

Recall

(a) WWW

 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KEIO-I

KEIO-II

KAIST-I

KAIST-II

P
er

ce
nt

ag
e 

of
 F

lo
w

s 
(%

)

Precision
Recall

(b) DNS

 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KEIO-I

KEIO-II

KAIST-I

KAIST-II

P
er

ce
nt

ag
e 

of
 F

lo
w

s 
(%

)

Precision
Recall

(c) Mail

 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KEIO-I

KEIO-II

KAIST-I

KAIST-II

P
er

ce
nt

ag
e 

of
 F

lo
w

s 
(%

)

Precision
Recall

(d) Chat

 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KEIO-I

KEIO-II

KAIST-I

KAIST-II

P
er

ce
nt

ag
e 

of
 F

lo
w

s 
(%

)

Precision
Recall

(e) FTP

 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KEIO-I

KEIO-II

KAIST-I

KAIST-II

P
er

ce
nt

ag
e 

of
 F

lo
w

s 
(%

)

Precision
Recall

(f) P2P

 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KEIO-I

KEIO-II

KAIST-I

KAIST-II

P
er

ce
nt

ag
e 

of
 F

lo
w

s 
(%

)

Precision
Recall

(g) Streaming

 0

 20

 40

 60

 80

 100

PAIX-I

PAIX-II

W
IDE

KAIST-I

KAIST-II

P
er

ce
nt

ag
e 

of
 F

lo
w

s 
(%

)

Precision
Recall

(h) Game

Figure 3: Per-application precision and recall of CoralReef

default ports usage. Figure 2 shows that the overall accu-
racy of CoralReef on the traces ranges from 71.4% to 95.9%.
Comparing Figure 2 with Figure 1 (a), we find that the over-
all accuracy of CoralReef is highly dependent on the traffic
mix, e.g., inversely proportional to the fraction of P2P flows
in a given trace. The PAIX-II and KAIST traces with the
highest fraction of P2P flows (4.0%-13.2%) have the lowest
overall accuracy with CoralReef classification. In contrast,
the WIDE and Keio traces on which CoralReef achieves the
highest overall accuracy contain the smallest portion of P2P
flows (less than 1%) among all examined traces. These ob-
servations motivate our detailed study of per-application per-
formance of CoralReef, which we summarize next.

4.1.2 Per-application performance
Figure 3 shows the per-application precision and recall of

CoralReef on eight major applications: WWW, DNS, Mail,
Chat, FTP, P2P, Streaming, and Games, which comprise most
(86.6%-95.7%) of the traffic flows whose ground truth we
know. As shown in Figure 3, we find that each application
consistently shares one of three sets of distinct character-
istics across all traces – (i) high precision and high recall
(WWW, DNS, Mail, and Chat); (ii) high precision but lower
recall (P2P and FTP); and (iii) lower precision but high recall
(Streaming and Game). The high precision of a port-based
classifier such as CoralReef on an application implies that its
default ports are seldom used by other applications whereas
high recall implies that the corresponding application mostly
uses its default ports.

Despite the common perception that ports are no longer
(or generally less) reliable and useful, port-based application
still identifies legacy applications and protocols quite accu-
rately, and often these constitute the majority of traffic on a
link. For WWW, DNS, Mail, News, SNMP, NTP, Chat, and
SSH flows, CoralReef achieves high precision and recall on
our traces (both > 90%). Flows belonging to DNS, Mail,
SNMP, News, and NTP are classified with more than 98.9%
precision and recall on all examined traces.

Nonetheless, it is important to recognize that port-based
classification fails to yield accurate classification results in
the following two cases: (i) when an application uses ephemeral
non-default ports, e.g., P2P and passive FTP data transfer de-
grade the recall of CoralReef. In our data set, 49.4%-96.1%
of P2P flows use ephemeral ports. (ii) when the default ports
of an application coincide with port masquerading P2P ap-
plications, e.g., Streaming and Game ports were often used
by P2P applications, which degrades the precision of Coral-
Reef. 12.0%-75.0% of flows on the default ports of Stream-
ing and Game applications turned out to be P2P traffic, ac-
cording to payload inspection. Contrary to recent claims of
P2P applications masquerading on WWW ports to evade de-
tection and blocking, we found little evidence of such mas-
querading in our traces: only 0.1%-0.5% of the flows on
WWW ports were deemed P2P (We are not aware of any
firewalling or filtering on the monitored links that might mo-
tivate such masquerading, so we cannot claim it is so rare on
more heavily firewalled parts of the Internet).

Finding 1 Port-based approach still accurately identifies
most legacy applications for the dataset at our hand (though
the two backbone traces were collected in 2004); its weak-
ness is in identifying applications that use ephemeral ports
or traffic masquerading behind a port typically used for an-
other application. Although we did not apply our analysis to
attack flows or those for which we did not have any ground
truth, this finding suggests that ports still possess significant
discriminative power in classifying certain types of traffic.

4.2 BLINC
For each trace we perform about 25 trials to configure

BLINC’s 28 threshold parameters for the best performance
in precision and recall (precision takes precedence in trade-
offs, since recall errors can be mitigated by other methods [25]).
Parameter values that optimize the precision may differ on
different links, so separate (per-trace) tuning prevents degra-
dation of overall accuracy by 10%-20%. Our experience also
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Figure 4: Overall accuracy of BLINC

suggests that one should tune the BLINC parameters related
to P2P applications first since almost every BLINC module
relies on them.

4.2.1 Overall accuracy
The original BLINC implementation generates graphlets

of source 〈IP, port〉 pairs that represent communication be-
havior, and then investigates whether each source graphlet
follows a typical server pattern, e.g., WWW, DNS, SMTP.
Once BLINC finds a source 〈IP, port〉 pair behaves like a
specific type of application server, it classifies all 〈IP, port〉
pairs that have talked to this server as the same application
clients. Thus, if a non-bidirectional backbone trace contains
client flows but misses response flows from the correspond-
ing servers, BLINC can not classify those client flows (clas-
sifies them in its ‘unknown’ class). To address this critical
limitation in classifying non-bidirectional backbone traffic,
we extend the BLINC implementation to generate node pro-
files of not only source 〈IP, port〉 pairs but also of destination
〈IP, ports〉 pairs, because we find that server ports of some
applications like Web can be identified by applying the same
graphlet matching algorithm on destination 〈IP, port〉 pairs
of client flows in the opposite direction.

Figure 4 shows the overall accuracy of the modified code,
Reverse BLINC, on our traces. Reverse BLINC on desti-
nation 〈IP, port〉 pairs improved the overall accuracy on the
PAIX and WIDE backbone traces by as much as 45%, since
in those traces one of the two directions of traffic is often
missing due to asymmetric routing. Most of the flows that
Reverse BLINC identified were of WWW and P2P clients.
However, our (admittedly research-grade) code extension al-
most doubles execution time.

4.2.2 Per-application performance
Figure 5 shows BLINC’s per-application precision and

recall. Once tuned, BLINC classifies WWW, DNS, Mail,
Chat, FTP, and Streaming flows with greater than 90% pre-
cision. However, recall for these applications is weaker than
precision, since all classification is threshold-based: the num-
ber of application flows from a given source must exceed a
certain threshold in order to trigger classification. If there
are too few flows from this source, its traffic remains unclas-
sified. DNS, Mail and Chat have lower recall in backbone
traces than in edge traces, because even Reverse BLINC
could not capture those application flows when server flows
were missing from backbone traces. Recall for FTP, Stream-

ing, and Game is always lower than 25.8% across all traces,
since host behavior signatures of BLINC for these applica-
tions do not cover the following cases: (i) when a Streaming
or FTP server concurrently provides any other application
services; (ii) when a Game client sends any TCP flows or
talks to only a few destination hosts.

With proper tuning, BLINC reliably identifies P2P flows,
particularly when we first apply port-based classification to
filter out DNS server-to-server (indeed essentially P2P) flows
which BLINC often misclassifies as P2P. When we filter
out DNS flows first and then apply BLINC to the remain-
ing flows, BLINC achieves >85% precision for P2P applica-
tion flows. However, recall of P2P traffic measured in bytes
is significantly (20.5%-61.9%) less than measured in flows.
This difference in recall is due to the fact that some P2P ap-
plications usually assign different ephemeral ports for every
single data transfer. If such transfers are large, then they ac-
count for a large number of bytes, but the number of flows
remains below our classification triggering threshold, so this
traffic remains unclassified.

Finding 2 We emprically found that, since BLINC (i) clas-
sifies traffic based on the observed behavior of server hosts
and (ii) adopts a threshold-based triggering mechanism, it
depends on whether the traffic containing enough behavioral
information about each host. Thus, the best place to use
BLINC is the border link of a single-homed edge network
where it can observe as much behavioral information of in-
ternal hosts as possible. For the same reason, BLINC is not
appropriate for backbone links, where (a) only a small por-
tion of behavioral information is collectible for each logged
host and (b) we often miss one direction of traffic due to
asymmetric routing.

4.2.3 Computational performance
When running BLINC, the running time and memory us-

age depend on the number of flows that need processing
in a time interval. The BLINC code (in C++) ran on the
Keio, KAIST, WIDE, and PAIX-I traces in real-time using
less than 2 GB of main memory. These traces contain less
than one million flows per five minute interval on average.
However, it took 16 hours to process the 2 hours of PAIX-
II trace containing 4.7 million flows per interval on aver-
age, consuming around 9-10 GB of memory. We used a PC
server with two 2.4 GHz Zeon CPUs and 4 GB of mem-
ory to run BLINC on the Keio, KAIST, and WIDE traces.
For the PAIX backbone traces, we used SDSC’s SUN Fire
15000 system with 228 GB of memory and SDSC’s 72 Ul-
traSPARC3 900 MHz CPUs (we used only one CPU, since
the BLINC code is not implemented to support parallel pro-
cessing with multiple CPUs).

4.3 Supervised Machine Learning Algorithms
We next evaluate the classification performance of the seven

most well-known supervised machine learning algorithms.
4.3.1 Key flow features
We first find key flow features for accurate traffic clas-

sification using the CFS algorithm with Best First search.
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Figure 5: Per-application precision and recall of BLINC
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Figure 6: Average overall accuracy of machine learning
algorithms by training set size

For every trace, the CFS selected four categories of fea-
tures: protocol, ports, TCP flags and packet size informa-
tion, reducing the number of features required from 37 to 6-
10.5 Features such as packet inter-arrival times, which vary
greatly by link, are not chosen as a key discriminator in any
trace. The results shed light on the feasibility of a truly ro-
bust traffic classifier, which we address in the next section.

According to our analysis, using the selected feature sub-
set degrades overall accuracy by only 0.1-1.4% compared
to using all 37 features, while dramatically reducing the re-
quired training time, which increases the model (classifier)
building speed by 3-10X. The feature selection process thus
provides an excellent trade-off between feature space reduc-
tion and loss of accuracy, confirming findings in [39]. Hence-
forth we will use the selected key features to evaluate the
performance of the learning algorithms.

4.3.2 Overall accuracy
Figure 6 shows the overall accuracy of the seven machine

learning algorithms as the training set size varies (from 100
to 100,000). Figure 6 does not show the results of the Neu-
ral Network method for larger training set sizes, since the al-
gorithm was prohibitively slow in building a classifier with

5We leave a detailed study on feature ranking across different ap-
plications/traces as future work.

more than ten thousand training instances (Figure 7(a)).
For every trace, with any size training set, we always ob-

tained consistent results. In our experimental setup, the SVM
achieves the highest overall accuracy, followed by Neural
Network (although it is quite slow to train) and k-NN. The
highest performing method, SVM, achieves more than 98.0%
average accuracy on all traces with 5,000 training flows, which
amounts only 2.5% of the size of the testing sets. The SVM
classifier appears to need little training – around 5K-10K
training instances sufficed in our study – which makes it
promising for practical Internet traffic classification since
training data is scarce [20]. The Neural Net method achieves
similar accuracy but is 10-1000X slower than SVM in train-
ing and testing, when evaluated on the same dataset.

Bayesian Network, Naive Bayes Kernel Estimation, Naive
Bayes, and C4.5 Decision Tree follow the top three algo-
rithms, requiring many more (around ten to several hundred
times) training instances than the top three methods do to
achieve the same level of overall accuracy.

4.3.3 Computational performance
Figure 7(a) and 7(b) show the learning time and classi-

fication time of the seven algorithms with increasing train-
ing set size.6 Naive Bayes, Naive Bayes Kernel Estimation,
Bayesian Networks, and C4.5 Decision Trees are the four
fastest algorithms in learning as well as classification fol-
lowed by k-NN, SVM, and Neural Network. Since k-NN
does not really involve any training, Figure 7(a) does not
include plots for the algorithm. The fastest classification al-
gorithm is C4.5 Decision Tree. While k-NN learns and clas-
sifies quickly with a smaller training set, its classification

6Note that we have evaluated the performance of concrete imple-
mentations in the Java-based (slow) WEKA software suite on our
test platform, not the theoretical complexity of the algorithms be-
cause (i) traffic classification efforts [29, 18, 16, 32, 31, 39] have
often used WEKA, and (ii) this approach yields tangible perfor-
mance numbers for and comparisons [39]. Optimized implementa-
tions would likely yield faster learning and classification speeds for
all algorithms.
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Figure 7: Computational performance of machine learning algorithms by training set size

time curve shows the steepest increase as the training set size
grows, eventually becoming slower than SVM when trained
with more than ten thousand instances. While it takes longer
to build an SVM classifier, its classification time is 10-100
times shorter than its learning time, making it more practical
than the k-NN and Neural Network. The Neural Network is
the slowest, particularly in learning. We run WEKA on two
different SDSC platforms: a SUN Fire 15000 system with
228 GB memory and seventy two 900 MHz UltraSPARC3
CPUs, and an IBM DataStar system with 256 GB memory
and thirty two 1.7 GHz Power4+ CPUs (used only one CPU,
since the WEKA code is not implemented to support parallel
processing with multiple CPUs).7

4.3.4 Per-application performance
Using the F-measure metric described in Section 3, Fig-

ure 8 shows per-application performance of the seven ma-
chine learning algorithms by training set size. The SVM per-
forms the best in terms of the per-application F-measure as
well, showing over 95% F-measure for any application with
more than a few thousand training flows.8 Figure 8 clearly
shows that the per-application F-measure of the SVM signif-
icantly drops as the training set size decreases to fewer than
1000. k-NN achieves lower F-measures than those of SVM
particularly on P2P, FTP, Streaming, and Chat. The Neural
Network also underperforms on our traces, though we have
only limited results for per-application F-measure due to its
extremely slow training.

For all the algorithms in every trace, Web and DNS are the
easiest to classify. A few hundred training flows are enough
to identify them with more than 88%-95% F-measure. In
contrast, P2P and FTP applications require the most training,
not surprising since each application category itself contains
multiple applications and/or communication patterns, e.g.,
data channel and control channel of FTP, etc.

Finding 3 Protocol, ports, packet size, and TCP flags are

7Although all the experiments in this paper were done on super-
computers, please note that we only used one 900 MHz or 1.7 GHz
CPU. We are testing the same algorithms on our new desktop PCs
with Intel 2.83 GHz Quad-Core CPUs, 8-16 GB RAM, and have
thus far not had performance problems.
8F-measure plots for Streaming and Games are not shown due to
space limitations.

key flow features in accurate classification of unidirectional
traffic flows. The SVM using these key features performed
the best for every application studied and on every back-
bone and edge trace examined, requiring the fewest training
flows (at most around a few thousand) for each application
compared to other algorithms.

4.4 Comparative Analysis
Across all the traces, the SVM classifier consistently out-

performed all other methods we evaluated. Table 3 compares
CoralReef, BLINC, and supervised machine learning algo-
rithms from various perspectives for practical Internet traffic
classification summarizing our results.

5. ROBUST TRAFFIC CLASSIFICATION
A major goal of traffic classification research is to produce

a robust classifier which performs well on both available and
unseen datasets. Progress toward this noble goal is limited
by the lack of measurement data from a sufficient variety of
links. We explore the feasibility of building a robust classi-
fier based on what we have learned so far.

5.1 Support Vector Machine Classifier
To build a robust classifier, we must consider three fac-

tors. First, a set of discriminating features; we use protocols,
ports, TCP header flags, and packet size information, recom-
mended by the Correlation-based Filter (CFS) algorithm in
Section 4.3.1. Second, an effective classification algorithm;
we choose the SVM, which consistently outperformed all
others we tested. Third, a correct and complete training set;
To minimize the effects of data bias, we compose a training
set from three traces collected at different links, the PAIX-II,
Keio-I, and KAIST-I. We randomly sample 1,000 flows for
each application from each of the three traces (in total, 3K
flows for each application) and then merge all of the sampled
flows into a single training set.

To test the robustness of the SVM classifier, we use all
flows in ten payload traces as testing sets without sampling
– seven traces that we have used so far (Table 1) plus three
new unseens, namely KAIST-III,WIDE-II,and POSTECH. 9

9All the new traces were captured during the “A Day in the Life of
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Figure 8: Per-application F-measure of machine learning algorithms by training set size

Table 3: Comparison of Traffic Classification Tools. Adaptability refers to whether the approach is adaptive to changing
or different traffic characteristics. Detectability refers to detection ability of new or anomalous applications.

Tools CoralReef BLINC Flow features based learning
Key features Ports and protocols Communication behavior patterns of hosts and ports Ports, protocols, TCP flags, and packet size info.
Input data format Packet header trace or flow table Flowtable, with the size of payload bytes for every flow Training/testing data with the key features above
Robust to asymmetric routing Yes Yes, only for WWW and P2P flows with Reverse BLINC Yes, with the key features above
Adaptability No Re-tuning needed May need to retrain, depending on training data
Detectability No Yes No for supervised learning,

Yes for unsupervised learning
Stateful or not Stateless Heavily stateful Moderately Stateful
Configuration complexity Very Low Very High (28 parameters) Depends on algorithms, usually low for traffic

classification
Rules buildup Manual port number DB update Manual graphlets setup and parameter tuning Automatic learning
Advantages Fast, easy-to-use, and scalable. Good at identifying P2P flows. Detects new as well as Automatic learning. Highly accurate and robust to

Good at identifying conventional encrypted applications. link and traffic conditions.
applications (except Passive FTP)

Limitations Port-masquerading applications Tuning overheads. Strongly depends on the topological High computational overheads (SVM, Neural Net.,
locations and traffic mixes. Low bytes accuracy. and k-NN) and memory requirements (C4.5)

Challenges Port DB update; Do we have (Automatic) Parameter tuning. Code optimization Finding right features, fast and accurate algorithms.
authorative references for for faster processing and better scalability. Obtaining representative training data for every
lots of new applications? application to build a robust traffic classifier.

5.2 Performance Evaluation
To demonstrate the robustness of our proposed SVM clas-

sifier we first compare its overall accuracy with those of
the SVM classifiers trained with sampled flows from a sin-
gle trace as in the previous section. The proposed classi-
fier achieves more than 94.2% overall accuracy over all ten
traces, while the previous single-trace-trained SVM classi-
fiers perform poorly on at least one other trace, with 49.8%-
83.4% of overall accuracy on these other traces. For exam-
ple, the SVM trained with 1% of sampled flows from all
flows in the KAIST-I trace achieves 49.8% of overall ac-
curacy on the PAIX-II trace. The SVM trained with a 1%
sample of flows from the Keio-I trace achieved 63.6% over-
all accuracy on the KAIST-I trace. Considering that those
single-trace-trained SVM classifiers in the previous section
achieved more than 95% average overall accuracy on the

the Internet (DITL)” simultaneous Internet data collection event on
January 9-10, 2007 (http://www.caida.org/projects/ditl/).

same trace from which they were trained (using a 0.5% sam-
ple; only 1,000 flows), their poor performance on a trace
from a different link indicates that the training sets from one
trace are not complete enough to allow accurate classifica-
tion of traffic on different links. The two aspects that allowed
the proposed robust SVM to classify traffic accurately on all
our traces were: (i) a correct and complete training set for
applications contained in a target trace, and (ii) the use of
our suggested unidirectional flow features.10

6. DISCUSSION
On ports as key features. One of the key findings of this

paper is that port numbers are still relevant to traffic clas-
sification, for the datasets we tested. Although their utility
for classification may not always hold, we acknowledge that

10Given space limitations, we leave a detailed study on the per-
formance of our robust SVM classifier, e.g., per-application F-
measure, as future work.



port-based method should not be ignored. In particular, port
lookup can reliably identify many conventional applications
accurately, especially when used with packet size informa-
tion, TCP header flags and protocol. Excluding port infor-
mation from the above key features in training an SVM clas-
sifier reduced the overall accuracy from 95%-99% to 56%-
70%. On the other hand, conventional applications are not
what have catapulted traffic classification activities into the
popular press. The more interest there is in identifying traffic
in order to constrain or charge users, the more incentive there
will be to hinder port-classification methods. Indeed, at any
time, or on any link, traffic may use unrecognized ports, or
misuse recognized ports to explicitly hide traffic. Thus, the
real challenge (and fear) is not in recognizing conventional
applications, but in detecting applications that are trying to
hide, e.g., via port masquerading or encryption.

On behavior based classification. While port informa-
tion and flow-features-based approaches make classification
decisions on a per-flow basis, host-behavior-based classifi-
cation as implemented in BLINC aggregates flow informa-
tion for an interval to derive behavioral patterns of observed
hosts. The accuracy of a host-behavior-based classification
strongly depends on whether the observed link is located at a
topologically appropriate place to collect enough behavioral
information on hosts [25]. Consequently, BLINC is effective
on links that capture both directions of every flow to a host,
such as the border link of a single-homed edge network. We
empirically showed that host-behavior analysis is less pow-
erful on aggregated, e.g., backbone, links, where often only
a small portion of flows from/to an end-host can be observed,
and where asymmetric routing prevents observation of both
directions of traffic.

On byte accuracy. The other limitation of the aggregated-
behavior-based approach is, even at a topologically appro-
priate place, these techniques will fail to classify traffic from/to
entities whose flows seldom traverse the target link. As a
result, they often misclassify as unknown a few large “ele-
phant” flows from/to such entities, achieving lower byte ac-
curacy (or recall) than flow accuracy (or recall). For ex-
ample, the byte accuracy of BLINC was significantly lower
(13.1%-59.3%) than its flow accuracy (56.2%-86.7%) on our
traces. Karagiannis et al. had similar results in [25]. This
weakness is a serious flaw for practical traffic classification,
as elephant flows may account for the majority of bytes trans-
ferred on typical networks [11]. A complementary per-flow
based classification process on remaining unclassified flows
is needed to overcome this limitation. Erman et al. showed
that a cost-sensitive sampling approach allowed machine learn-
ing algorithms to achieve high byte accuracy and flow accu-
racy [19]. This approach trains a classifier with more of the
rare but resource-intensive cases, i.e., elephant flows. They
trained their classifier with a training set that contained 50%
of flows below the 95% percentile of flow size and 50% of
flows above the 95% percentile of flow size. This technique
substantially improved the byte accuracy for the classifier,
with only a marginal reduction in flow accuracy.

On single vs. bidirectional flow features for backbone
traffic classification. Accurate traffic classification is fea-
sible only when a classifier possesses correct, complete fin-
gerprints for target applications. Previous efforts on flow-
features-based classification [29, 31, 36, 9, 16, 7, 14, 42, 20,
39] have shown that bidirectional TCP flow statistics provide
such fingerprints for various applications. However, these
methods are not appropriate for classifying backbone traf-
fic where one direction of a TCP flow is unobserved due to
routing asymmetries. Backbone traffic classification is chal-
lenging because only partial information about bidirectional
TCP connections is available. Erman et al. addressed this
limitation by proposing an algorithm that uses the packets of
an unidirectional TCP flow to estimate the flow statistics of
the unobserved direction [17], leaving UDP traffic classifi-
cation as future work. In this paper we addressed this prob-
lem by using ports as key features in addition to TCP flags
and packet size, based on (i) our finding that ports still iden-
tify many conventional applications and (ii) the results of the
Correlation-based Feature Selection. The resulting classi-
fiers show accuracies comparable to or higher than those of
previous work, on all our backbone and edge traces, using
our suggested single-direction flow features. While port in-
formation does not seem necessary when we train a learning
algorithm with bi-directional flow features to classify TCP
traffic, it is indispensable when using only single-direction
flow features to classify both TCP and UDP traffic.

On the SVM-based robust traffic classifier. The SVM
had already been shown to perform well in multiple areas of
various pattern classification problems [8]. We showed that
the SVM performs traffic classification accurately as well,
once we train the algorithm with a representative training
set using our suggested key flow features. To build a robust
traffic classifier with the SVM and our suggested flow fea-
tures, we need to find a representative training set which is
not biased toward link characteristics and traffic conditions,
for every application. Progress on this goal will require that
traffic classification researchers share their tools and data,
labeled with ground truth (particularly of new applications
with port masquerading and encryption), collected from di-
verse links on the Internet.

7. CONCLUSIONS
We conducted a detailed comparison of three well-studied

approaches to traffic classification: ports-based, host-behavior-
based, and flow-features-based. Our study yielded several
insights: (a) The effectiveness of port-based classification
in identifying legacy applications is still impressive, further
strengthened by the use of packet size and TCP flag infor-
mation. This fact explains why research attention has shifted
to detecting and identifying new applications that use port-
masquerading and encryption, i.e., traffic deliberately try-
ing to evade traffic classification. Unfortunately, increas-
ing attention to classifying traffic for purposes not neces-
sarily approved by originator of the traffic is likely to in-
crease this category of traffic, inducing an arms race be-



tween those trying to classify traffic, and those trying to
avoid having their traffic classified. (b) Each approach has
its own strengths and weaknesses, and careful combinations
can provide synergy. When an approach has a fundamental
weakness in classifying particular types of traffic, integrat-
ing aspects of other techniques can help. For example, host-
behavior-based methods such as BLINC can be augmented
with per-flow based classification process to increase byte
accuracy. (c) The SVM consistently achieved the highest
accuracy. We also developed a robust SVM which achieved
94.2%-97.8% accuracy on both available and unseen traces.

Scientifically grounded traffic classification research re-
quires that researchers share tools and algorithms, and base-
line data sets from a wide range of Internet links to reproduce
results. In pursuit of this goal, we make our code, dataset
labeled with ground truth, and classifiers available for re-
searchers interested in validating or extending our work.
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